0.075 (6) and 0.566 (5) \AA, respectively, from the plane.

The only direct hydrogen bonding between complexes occurs in the c direction, from the NH_{2} group of one ligand to the alkoxide O of a ligand from a neighbouring molecule. The $\mathrm{N} \cdots \mathrm{O}$ distance is 2.951 (5) \AA, the magnitude normally found for $\mathrm{N} \cdots \mathrm{O}$ hydrogen bonds. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance between complexes is $5 \cdot 164 \AA(c / 2)$.

The compound contains one molecule of water of crystallization per formula unit, with $\mathrm{O}(W)$ on a twofold axis. This causes additional hydrogen bonding which connects complexes that have Cu atoms on the same (200) plane. The $\mathrm{O}(W) \cdots \mathrm{N}$ and $\mathrm{O}(W) \cdots \mathrm{O}(1)$ distances of 3.024 (7) and 2.706 (6) \AA are normal values for $\mathrm{O} \cdots \mathrm{N}$ and $\mathrm{O} \cdots \mathrm{O}$ hydrogen-bond contacts. Fig. 2 depicts the crystal structure and Table 3 gives the hydrogen-bond parameters.

The hydrogen-bonding network differs from that found for the dichelate complex cation $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{10}{ }^{-}\right.\right.$ $\left.\mathrm{NO})\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}^{2+}$ in which the same aminoalcohol is the ligand (Bertrand, Fujita \& Vanderveer, 1980). This cation is a hydrogen-bonded dimer with a short $\mathrm{O} \cdots \mathrm{O}$ distance of 2.516 (3) \AA between pairs of ligands coordinated to different Cu atoms. All other hydrogen-bond donor-acceptor distances in the compound are normal. Since all hydrogen-bond contacts in $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ are normal, the complex is to be regarded as monomeric.
In $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}\right)_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2} \quad$ (Muhonen \& Hämäläinen, 1978) the complex ions are connected by hydrogen bonds involving the benzoate ions. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 5.654 (2) \AA and there is a short $\mathrm{O} \cdots \mathrm{O}$ distance of 2.431 (7) \AA between the ligand and the benzoate ion.

Fig. 2. Stereoview of overall structure. Fine lines indicate hydrogen bonds. The a axis is up the page, b towards the viewer, and c across from left to right.

Table 3. Hydrogen-bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$\angle D-\mathrm{H} \cdots A$	$D \cdots A$	$\mathrm{H} \cdots A$	$D-\mathrm{H}$	
$\mathrm{N}-\mathrm{H}(9) \cdots \mathrm{O}\left(1^{\text {il }}\right)$	$169(5)$	$2.951(5)$	$2.07(5)$	$0.89(5)$	
$\mathrm{N}-\mathrm{H}(10) \cdots \mathrm{O}\left(W^{\text {ill }}\right)$	$170(4)$	$3.024(7)$	$2.29(5)$	$0.75(5)$	
$\mathrm{O}(W)-\mathrm{H}(11) \cdots \mathrm{O}(1)$	$167(6)$	$2.706(6)$	$1.91(6)$	$0.81(6)$	
Symmetry codes: (ii) $x, 1-y, \frac{1}{2}+z$ (iii) $-x,-y, 1-z$					

References

Bertrand, J. A., Fujita, E. \& Vanderveer, D. G. (1980). Inorg. Chem. 19, 2022-2028.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Muhonen, H. (1980). Finn. Chem. Lett. pp. 138-141.
Muhonen, H. \& Hämäläinen, R. (1978). Acta Chem. Scand. Ser. A, 32, 121-125.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Tetrakis(dimethyl sulphoxide)palladium(II) Bis(tetrafluoroborate) Dimethyl Sulphoxide Solvate

By Brian F. G. Johnson, José Puga and Paul R. Raithby*
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 2 December 1980; accepted 22 December 1980)

Abstract

C}_{10} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{O}_{5} \mathrm{PdS}_{5},\left[\mathrm{Pd}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}\right.\). $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$, monoclinic, $P 2_{1} / c, a=10 \cdot 650(3), b=$ 14.163 (5), $c=17.778$ (7) $\AA, \beta=95.85$ (3) ${ }^{\circ}, U=$ $2667.6 \AA^{3}, Z=4, D_{c}=1.67 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Cu} K a)=$ $9.95 \mathrm{~mm}^{-1}$; final $R=0.086$ for 2475 unique diffractometer data. The $\mathrm{Pd}^{\mathrm{HI}}$ atom displays the expected four-

[^0]0567-7408/81/040953-04\$01.00
coordinate square-planar geometry. Two of the coordinated dimethyl sulphoxide $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$ ligands bond to the metal via S and the other two via O atoms. The dication exhibits a cis geometry. The anions and the $\mathrm{Me}_{2} \mathrm{SO}$ solvate molecule are not coordinated.

Introduction. Dimethyl sulphoxide is an interesting ligand because of the coordination isomerism which it (C) 1981 International Union of Crystallography
exhibits. Small or highly charged metal ions favour coordination via the O atom whereas large or less highly charged metal ions tend to favour S -bonding. The dication $\left[\left.\mathrm{Pd}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{4}\right|^{2+}\right.$ is of special interest because it is considered to contain two S -bonded and two O-bonded ligands in a cis arrangement (Wayland \& Schramm, 1968). However, the ${ }^{1} \mathrm{H}$ NMR spectrum of this dication shows a temperature variation indicating that several isomers exist, at least in solution (Wayland \& Schramm, 1968; Price, Schramm \& Wayland, 1970). To confirm the postulation of the structure in the solid state this single-crystal X-ray analysis was undertaken.

The title compound was prepared by dissolving palladium chloride in $\mathrm{Me}_{2} \mathrm{SO}$, at elevated temperatures, and adding an acetone solution containing a stoichiometric amount of silver tetrafluoroborate. The

Table 1. Atom coordinates ($\times 10^{4}$) and isotropic or equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U
$\mathrm{Pd}(1)$	7080 (1)	1841 (1)	2125 (1)	47 (1)
S(1)	5271 (4)	2017 (3)	2651 (2)	59 (2)
S(2)	6407 (4)	2616 (3)	1055 (2)	64 (2)
S(3)	9681 (4)	2220 (3)	1430 (3)	68 (3)
S(4)	9026 (4)	1036 (3)	3416 (2)	66 (3)
O(1)	4281 (12)	2611 (11)	2270 (7)	90 (9)
$\mathrm{O}(2)$	7303 (13)	2567 (11)	486 (7)	99 (9)
$\mathrm{O}(3)$	8780 (9)	1504 (7)	1733 (6)	55 (6)
$\mathrm{O}(4)$	7604 (10)	1038 (8)	3074 (6)	66 (6)
C(1)	4686 (19)	881 (14)	2766 (12)	89 (13)
C(2)	5613 (18)	2392 (15)	3608 (10)	83 (12)
C(3)	6097 (19)	3823 (12)	1257 (12)	89 (13)
C(4)	4951 (18)	2179 (15)	659 (11)	87 (12)
C(5)	10190 (18)	1635 (13)	638 (12)	85 (13)
C(6)	11074 (18)	2086 (17)	2102 (15)	113 (16)
C(7)	9348 (22)	-200 (13)	3463 (12)	95 (13)
C (8)	8926 (22)	1258 (18)	4411 (11)	107 (15)
B(1)	2646 (9)	1174 (8)	4664 (7)	135 (12)
F(1)	3887 (10)	904 (15)	4763 (12)	161 (4)
$\mathrm{F}(1 a)$	3841 (14)	1318 (24)	4465 (19)	161 (4)
F(2)	2505 (18)	1894 (12)	4147 (11)	161 (4)
$\mathrm{F}(2 a)$	2212 (29)	1989 (16)	4961 (20)	161 (4)
F(3)	2277 (18)	1477 (15)	5339 (9)	161 (4)
$\mathrm{F}(3 a)$	2669 (33)	469 (20)	5192 (17)	161 (4)
F(4)	1916 (17)	423 (12)	4405 (12)	161 (4)
$\mathrm{F}(4 a)$	1864 (26)	921 (24)	4037 (14)	161 (4)
B(2)	-1572 (9)	3999 (9)	3218 (7)	101 (8)
F(5)	-950 (25)	3268 (15)	2913 (17)	157 (4)
F(5a)	-1232 (19)	3576 (16)	2576 (10)	157 (4)
F (6)	-2844 (10)	3907 (25)	3022 (15)	157 (4)
$\mathrm{F}(6 a)$	-2707 (13)	4448 (17)	3058 (13)	157 (4)
F(7)	-1329 (26)	3983 (27)	3989 (7)	157 (4)
$\mathrm{F}(7 a)$	-670 (16)	4645 (15)	3474 (14)	157 (4)
F(8)	-1165 (29)	4838 (12)	2946 (20)	157 (4)
$\mathrm{F}(8 a)$	-1678 (21)	3328 (15)	3763 (12)	157 (4)
S(5)	6416 (10)	-533 (8)	892 (6)	59 (3)
C(101)	7575 (21)	-900 (17)	1523 (14)	110 (8)
C(102)	7235 (23)	-183(18)	205 (15)	122 (9)
$\mathrm{O}(100)$	5876 (17)	151 (14)	1161 (11)	144 (7)
$U_{\text {eq }}=13 \sin \alpha \sin \beta$				

solution was filtered and, upon cooling, the filtrate yielded yellow platelets. The crystals were air-sensitive and were mounted in 0.5 mm Lindemann tubes under nitrogen. 4107 intensities were measured for $3.0<2 \theta$ $\leq 130.0^{\circ}$ on a Syntex $P 2$, four-circle diffractometer with graphite-monochromated Cu Kn radiation, an $\omega-2 \theta$ scan technique, and a crystal $0.56 \times 0.19 \times$ $0.08 \mathrm{~mm} . \mathrm{Lp}$ corrections and a numerical absorption correction using the indexed faces of the crystal [(010), $(010),(100),(100),(001)$ and (001 i)] were applied; transmission factors ranged from 0.278 to 0.513 . The data were averaged to give 2475 unique observed intensities $[F>4 \sigma(F)]$. Cell dimensions were derived from the angular measurement of 15 strong reflections in the range $35<2 \theta<50^{\circ}$.

The Pd atom was located from a Patterson synthesis, and all the other non- H atoms were found from subsequent difference syntheses. The structure was refined by full-matrix least squares. The Pd, S, O, and C atoms of the cation were assigned anisotropic thermal parameters; the methyl H atoms were not located. The atoms of the $\mathrm{Me}_{2} \mathrm{SO}$ solvate molecule and the B atoms of the anions were assigned isotropic temperature factors while the F atoms were assigned a common isotropic temperature factor. Both BF_{4}^{-} groups were disordered; each was treated as a B atom surrounded by two interlocking tetrahedra of F atoms. In each tetrahedron the $\mathrm{B}-\mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}$ distances were fixed at 1.37 and $2.237 \AA$ respectively; the occupancies of the F atoms were refined as k and $(1-k)$. Complex neutral-atom scattering factors (International Tables for X-ray Crystallography, 1974) were employed, with the weighting scheme $w=2.4472 /\left[\sigma^{2}(F)+0.002 F^{2}\right]$ for the final stages of refinement. The final $R=0.086$ and $R^{\prime}=\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|=0.091$. Final atomic

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

S(1)-Pd(1) 2.240	$2 \cdot 240$ (4)	$\mathrm{S}(2)-\mathrm{Pd}(1) \quad 2.249$	$2 \cdot 249$ (4)
$\mathrm{O}(3)-\mathrm{Pd}(1) \quad 2.06$	2.061 (9)	$\mathrm{O}(4)-\mathrm{Pd}(1) \quad 2.065$	2.065 (10)
$\mathrm{O}(1)-\mathrm{S}(1) \quad 1.460$	1.460 (13)	$\mathrm{C}(1)-\mathrm{S}(1) \quad 1.745$	1.745 (18)
$\mathrm{C}(2)-\mathrm{S}(1) \quad 1.78$	1.783 (17)	$\mathrm{O}(2)-\mathrm{S}(2) \quad 1.461$	1.461 (13)
$\mathrm{C}(3)-\mathrm{S}(2) \quad 1.78$	1.784 (17)	$\mathrm{O}(3)-\mathrm{S}(3) \quad 1.531$	1.531 (10)
$\mathrm{C}(4)-\mathrm{S}(2) \quad 1.749$	1.749 (18)		
$\mathrm{C}(5)-\mathrm{S}(3) \quad 1.766$	1.766 (18)	$\mathrm{C}(6)-\mathrm{S}(3) \quad 1.817$	1.817 (20)
$\mathrm{O}(4)-\mathrm{S}(4) \quad 1.573$	1.573 (11)	$\mathrm{C}(7)-\mathrm{S}(4) \quad 1.783$	1.783 (18)
$\mathrm{C}(8)-\mathrm{S}(4) \quad 1.810$	1.810 (18)	$\mathrm{C}(101)-\mathrm{S}(5) \quad 1.664$	1.664 (25)
$\mathrm{C}(102)-\mathrm{S}(5) \quad 1.648$	1.648(27)	$\mathrm{O}(100)-\mathrm{S}(5) \quad 1.246$	1.246 (20)
$\mathrm{S}(2)-\mathrm{Pd}(1)-\mathrm{S}(1)$	94.9 (2)	$\mathrm{O}(3)-\mathrm{Pd}(1)-\mathrm{S}(1)$	171.7(3)
$\mathrm{O}(3)-\mathrm{Pd}(1)-\mathrm{S}(2)$	92.4 (3)	$\mathrm{O}(4)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$83 \cdot 8$ (3)
$\mathrm{O}(4)-\mathrm{Pd}(1)-\mathrm{S}(2)$	$175 \cdot 3$ (3)	$\mathrm{O}(4)-\mathrm{Pd}(1)-\mathrm{O}(3)$	88.6 (4)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{Pd}(1)$	118.8 (5)	$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Pd}(1)$	$106 \cdot 2(7)$
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	109.6 (9)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{Pd}(1)$	109.3 (6)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{O}(1)$	109.8 (9)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(1)$	$101.7(10)$
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{Pd}(1)$	$112 \cdot 8$ (5)	$\mathrm{C}(3)-\mathrm{S}(2)-\mathrm{Pd}(1)$	110.3 (7)
$\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{Pd}(1)$	111.1 (5)	$\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{O}(2)$	108.7 (7)
$\mathrm{C}(3)-\mathrm{S}(2)-\mathrm{O}(2)$	109.4 (9)	$\mathrm{C}(5)-\mathrm{S}(3)-\mathrm{O}(3)$	$103 \cdot 0$ (7)
$\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{C}(3)$	$104 \cdot 2$ (10)		
$\mathrm{C}(6)-\mathrm{S}(3)-\mathrm{O}(3)$	101.5 (10)	$\mathrm{C}(6)-\mathrm{S}(3)-\mathrm{C}(5)$	$100 \cdot 3$ (11)
$\mathrm{C}(7)-\mathrm{S}(4)-\mathrm{O}(4)$	101.1 (9)	$\mathrm{C}(8)-\mathrm{S}(4)-\mathrm{O}(4)$	103.1 (9)
$\mathrm{C}(8)-\mathrm{S}(4)-\mathrm{C}(7)$	98.9 (11)	$\mathrm{S}(3)-\mathrm{O}(3)-\mathrm{Pd}(1)$	124.7 (6)
$\mathrm{S}(4)-\mathrm{O}(4)-\mathrm{Pd}(1)$	119.1 (6)	C(102)-S(5)-C(101)	$100 \cdot 4$ (13)
$\mathrm{O}(100)-\mathrm{S}(5)-\mathrm{C}(101)$	108.9 (14)	$\mathrm{O}(100)-\mathrm{S}(5)-\mathrm{C}(102)$	$110 \cdot 5$ (15)

$$
\left[\mathrm{Pd}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right\}_{4}\right]\left[\mathrm{BF}_{4}\right]_{2} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}
$$

coordinates, and equivalent isotropic and isotropic temperature factors are given in Table 1; the F atoms denoted a refer to the second set of disordered F atoms. The bond lengths and angles associated with these atomic coordinates are listed in Table 2.*

Diseussion. Fig. I shows the unit-cell contents. There are no abnormally close contacts between the atoms of the cation, anions, and the solvent molecule. The shortest intermolecular distance is $3 \cdot 137$ (25) \AA between $O(100)$ and $C(4)$ related by the symmetry operation $x, \frac{1}{2}-y, \frac{1}{2}+z$.

The Pd atom displays the expected four-coordinate square-planar geometry (Fig. 2). Two of the coordinated $\mathrm{Me}_{2} \mathrm{SO}$ ligands bond to the metal via their S atoms, and the others through O . They are arranged so

[^1]

Fig. 1. The unit-cell contents for $\left[\mathrm{Pd}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}$. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$.

Fig. 2. The geometry of the $\left[\mathrm{Pd}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{4}\right]^{2+}$ cation.
that the ligands with the same donor atom are cis to each other. The angles at the Pd atom show small deviations from the idealized value of 90°, with the widest angle between the two S -bonded ligands and the narrowest between the two O -bonded groups. The presence of both S - and O -bonded $\mathrm{Me}_{2} \mathrm{SO}$ ligands in the same molecule has been established by crystallographic techniques in several Ru complexes (Mercer \& Trotter, 1975; Davies, Einstein, Farrell, James \& McMillan, 1978). The cis arrangement of the ligands in this complex may be attributed to the fact that S -bonded $\mathrm{Me}_{2} \mathrm{SO}$ is considered to be a weak π-acceptor ligand, while O -bonded $\mathrm{Me}_{2} \mathrm{SO}$ is a strong σ donor, so there would be little competition for the metal π electrons with the S - and O -bonded groups trans to each other.

The two $\mathrm{Pd}-\mathrm{S}$ distances in the title compound are equivalent. They lie in the range [2.231(3)2.253 (3) \AA Jound in the structure of cis $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}{ }^{-}$ $\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}$ (Langs, Hare \& Little, 1967) where the $\mathrm{Me}_{2} \mathrm{SO}$ ligands are trans to monodentate nitrate groups, but are significantly shorter than the equivalent lengths of $2.300(4) \AA$ observed in trans $-\mathrm{PdCl}_{2}-$ $\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}$ (Bennett, Cotton \& Weaver, 1966). There are no other examples of O -bonded $\mathrm{Me}_{2} \mathrm{SO}$ to Pd , but the $\mathrm{Pd}-\mathrm{O}$ distances in the title compound are in close agreement with the 2.066 (8) \AA for the $\mathrm{Pd}-\mathrm{O}$ (nitrate) bonds in cis- $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}$ (Langs, Hare \& Little, 1967).

All four S atoms in the cation have distorted tetrahedral coordination geornetries. For $\mathrm{S}(3)$ and $\mathrm{S}(4)$, which are not involved in bonding to the metal, one coordination site is occupied by the lone pair of electrons, and the $\mathrm{O}-\mathrm{S}-\mathrm{C}$ and $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angles are significantly smaller than the idealized tetrahedral value. For the metal-coordinated atoms, $S(1)$ and $S(2)$, the $\mathrm{Pd}-\mathrm{S}-\mathrm{O}$ angles are the widest [mean $115.8(6)^{\circ}$], and the S-O distance [mean 1.461 (13) \AA] is shorter than the distance $[1.531(15) \AA$] in the free ligand (Thomas, Shoernaker \& Eriks, 1966). This distance is very similar to the 1.463 (7) \AA in $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}$ (Langs, Hare \& Little, 1967) and is evidence for considerable $d \pi-p \pi$ bonding. Short S-O distances, concomitant with long $\mathrm{Ru}-\mathrm{S}$ distances in $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]$ $\left[\mathrm{RuCl}_{3}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{3}\right]$ (McMillan, Mercer, James \& Trotter, 1975), have been attributed to a decrease in the possible $d \pi-p \pi$ back donation from the Ru to the S atom caused by the competition from the other ligands for the available π-donor orbitals.

The $\mathrm{S}-\mathrm{O}$ distances of the O -coordinated $\mathrm{Me}_{2} \mathrm{SO}$ ligands are ca $0.09 \AA$ longer than for the S -bonded ligands. This reflects the decrease in π bonding in these bonds upon coordination of the O atom to the metal. These $\mathrm{S}-\mathrm{O}$ distances found in this study are similar to the value of 1.557 (4) \AA reported for the O -coordinated $\mathrm{Me}_{2} \mathrm{SO}$ group in $\mathrm{Ru}\left(\mathrm{Me}_{2} \mathrm{SO}_{4}\right)_{4} \mathrm{Cl}_{2}$ (Mercer \& Trotter, 1975).

The $\mathrm{S}-\mathrm{C}$ lengths and $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angles correspond closely to values reported in other $\mathrm{Me}_{2} \mathrm{SO}$ complexes. The bond parameters in the uncoordinated solvent $\mathrm{Me}_{2} \mathrm{SO}$ molecule have fairly high e.s.d.'s, but the values do not deviate significantly from those in the free ligand (Thomas, Shoemaker \& Eriks, 1966). The BF_{4}^{-}anions are disordered and the bond parameters have been fixed at the idealized values.

We thank the Science Research Council for financial support and the Fundacion 'Gran Mariscal de Ayacucho' for a studentship (to JP). Calculations were performed on the University of Cambridge IBM 370/165 computer with SHELX 76 (Sheldrick, 1976).

References

Bennett, M. J., Cotton, F. A. \& Weaver, D. L. (1966). Nature (London), pp. 286-287.

Davies, A. R., Einstein, F. W. B., Farrell, N. P., James, B. R. \& McMillan, R. S. (1978). Inorg. Chem. 17, 1965-1969.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
langs, D. A., Hare, C. R. \& Little, R. G. (1967). J. Chem. Soc. Chem. Commun. pp. 1080-1081.
McMillan, R. S., Mercer, A., James, B. R. \& Trotter, J. (1975). J. Chem. Soc. Dalton Trans. pp. 1006-1010.

Mercer, A. \& Trotter, J. (1975). J. Chem. Soc. Dalton Trans. pp. 2480-2483.
Price, J. H., Schramm, R. F. \& Wayland, B. B. (1970). J. Chem. Soc. Chem. Commun. pp. 1377-1378.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Thomas, R., Shoemaker, C. R. \& Eriks, K. (1966). Acta Cryst. 21, 12-20.
Wayland, B. B. \& Schramm, R. F. (1968). J. Chem. Soc. Chem. Commun. pp. 1465-1466.

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35875 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

